Знайти похідну функцію з докладним рішенням. Складна функція. Похідна складна функція. Де що шукати на інших сторінках

Після попередньої артпідготовки будуть менш страшні приклади з 3-4-5 вкладеннями функцій. Можливо, наступні два приклади здадуться деяким складними, але якщо їх зрозуміти (хтось і мучиться), то майже все інше в диференціальному обчисленні здаватиметься дитячим жартом.

Приклад 2

Знайти похідну функції

Як зазначалося, під час перебування похідної складної функції, перш за все, необхідно правильноРОЗІБРАТИСЯ у вкладеннях. У тих випадках, коли є сумніви, нагадую корисний прийом: беремо піддослідне значення «ікс», наприклад, і пробуємо (подумки або на чернетці) підставити це значення в «страшний вираз».

1) Спочатку нам потрібно обчислити вираз, отже, сума - найглибше вкладення.

2) Потім необхідно обчислити логарифм:

4) Потім косинус звести до куба:

5) На п'ятому кроці різниця:

6) І, нарешті, сама зовнішня функція – це квадратний корінь:

Формула диференціювання складної функції застосовуються у зворотному порядку, від самої зовнішньої функції, до внутрішньої. Вирішуємо:

Начебто без помилок:

1) Беремо похідну від квадратного кореня.

2) Беремо похідну від різниці, використовуючи правило

3) Похідна трійки дорівнює нулю. У другому доданку беремо похідну від ступеня (куба).

4) Беремо похідну від косинуса.

6) І, нарешті, беремо похідну від найглибшого вкладення.

Може здатися дуже важко, але це ще не найбільш звірячий приклад. Візьміть, наприклад, збірку Кузнєцова і ви оціните всю красу і простоту розібраної похідної. Я помітив, що схожу штуку люблять давати на іспиті, щоб перевірити, чи розуміє студент, як знаходити похідну складної функції, чи не розуміє.

Наступний приклад самостійного рішення.

Приклад 3

Знайти похідну функції

Підказка: Спочатку застосовуємо правила лінійності та правило диференціювання твору

Повне рішення та відповідь наприкінці уроку.

Настав час перейти до чогось більш компактного та симпатичного.
Не рідкісна ситуація, як у прикладі дано твір не двох, а трьох функцій. Як знайти похідну від твору трьох множників?

Приклад 4

Знайти похідну функції

Спочатку дивимося, а чи не можна твір трьох функцій перетворити на твір двох функцій? Наприклад, якби у нас у творі було два багаточлени, то можна було б розкрити дужки. Але в прикладі всі функції різні: ступінь, експонента і логарифм.

У таких випадках необхідно послідовнозастосувати правило диференціювання твору два рази

Фокус у тому, що з «у» ми позначимо твір двох функцій: , а й за «ве» - логарифм: . Чому можна так зробити? А хіба - це не твір двох множників і правило не працює? Нічого складного немає:


Тепер залишилося вдруге застосувати правило до дужки:

Можна ще поплутатися і винести щось за дужки, але в даному випадку відповідь краще залишити саме в такому вигляді - легше перевірятиме.

Розглянутий приклад можна вирішити другим способом:

Обидва способи вирішення абсолютно рівноцінні.

Приклад 5

Знайти похідну функції

Це приклад самостійного рішення, у зразку він вирішений першим способом.

Розглянемо аналогічні приклади із дробами.

Приклад 6

Знайти похідну функції

Тут можна йти кількома шляхами:

Або так:

Але рішення запишеться компактніше, якщо в першу чергу використовувати правило диференціювання приватного , Прийнявши за весь чисельник:

У принципі приклад вирішено, і якщо його залишити в такому вигляді, то це не буде помилкою. Але за наявності часу завжди бажано перевірити на чернетці, а чи не можна спростити відповідь?

Наведемо вираз чисельника до спільного знаменника і позбавимося триповерховості дробу:

Мінус додаткових спрощень полягає в тому, що є ризик припуститися помилки вже не при знаходженні похідної, а при банальних шкільних перетвореннях. З іншого боку, викладачі нерідко бракують завдання та просять «довести до пуття» похідну.

Простіший приклад для самостійного вирішення:

Приклад 7

Знайти похідну функції

Продовжуємо освоювати прийоми знаходження похідної, і зараз ми розглянемо типовий випадок, коли для диференціювання запропоновано «страшний» логарифм

Висновок формули похідної статечної функції (x у ступені a). Розглянуто похідні від коренів із x. Формула похідної статечної функції вищого порядку. Приклади обчислення похідних.

Зміст

Див. також: Ступінна функція та коріння, формули та графік
Графіки статечної функції

Основні формули

Похідна від x у ступені a дорівнює a , помноженому на x у ступені a мінус один:
(1) .

Похідна від кореня ступеня n з x до ступеня m дорівнює:
(2) .

Висновок формули похідної статечної функції

Випадок x > 0

Розглянемо статечну функціювід змінної x з показником ступеня a:
(3) .
Тут a є довільним дійсним числом. Спочатку розглянемо випадок.

Щоб знайти похідну функції (3), скористаємось властивостями статечної функції та перетворюємо її до наступного виду:
.

Тепер знаходимо похідну, застосовуючи:
;
.
Тут.

Формулу (1) доведено.

Висновок формули похідної від кореня ступеня n з x до ступеня m

Тепер розглянемо функцію, що є коренем такого виду:
(4) .

Щоб знайти похідну, перетворимо корінь до статечної функції:
.
Порівнюючи з формулою (3) бачимо, що
.
Тоді
.

За формулою (1) знаходимо похідну:
(1) ;
;
(2) .

Насправді немає необхідності запам'ятовувати формулу (2). Набагато зручніше спочатку перетворити коріння до статечних функцій, а потім знаходити їх похідні, застосовуючи формулу (1) (див. приклади наприкінці сторінки).

Випадок x = 0

Якщо , то статечна функція визначена при значенні змінної x = 0 . Знайдемо похідну функції (3) при x = 0 . Для цього скористаємося визначенням похідної:
.

Підставимо x = 0 :
.
При цьому під похідною ми розуміємо правосторонню межу, для якої .

Отже, ми знайшли:
.
Звідси видно, що з , .
При , .
При , .
Цей результат виходить і за формулою (1):
(1) .
Тому формула (1) справедлива і за x = 0 .

Випадок x< 0

Знову розглянемо функцію (3):
(3) .
При деяких значеннях постійної a вона визначена і при негативних значеннях змінної x . А саме, хай буде раціональним числом. Тоді його можна подати у вигляді нескоротного дробу:
,
де m і n – цілі числа, які не мають спільного дільника.

Якщо n непарне, то статечна функція визначена при негативних значеннях змінної x . Наприклад, при n = 3 та m = 1 ми маємо кубічний корінь з x :
.
Він і при негативних значеннях змінної x .

Знайдемо похідну статечної функції (3) при і при раціональних значеннях постійної a для яких вона визначена. Для цього представимо x у наступному вигляді:
.
Тоді ,
.
Знаходимо похідну, виносячи постійну за знак похідної та застосовуючи правило диференціювання складної функції:

.
Тут. Але
.
Оскільки , то
.
Тоді
.
Тобто формула (1) справедлива і при:
(1) .

Похідні вищих порядків

Тепер знайдемо похідні вищих порядків від статечної функції
(3) .
Похідну першого порядку ми вже знайшли:
.

Виносячи постійну a за знак похідної, знаходимо похідну другого порядку:
.
Аналогічним чином знаходимо похідні третього та четвертого порядків:
;

.

Звідси видно, що похідна довільного n-го порядкумає такий вигляд:
.

Зауважимо, що якщо a є натуральним числом, то n -я похідна є постійною:
.
Тоді всі наступні похідні дорівнюють нулю:
,
при .

Приклади обчислення похідних

приклад

Знайдіть похідну функції:
.

Перетворюємо коріння до ступенів:
;
.
Тоді вихідна функція набуває вигляду:
.

Знаходимо похідні ступенів:
;
.
Похідна постійної дорівнює нулю:
.

Функції складного вигляду який завжди підходять під визначення складної функції. Якщо є функція виду y = sin x - (2 - 3) · r c t g x x 5 7 x 10 - 17 x 3 + x - 11, то її не можна вважати складною на відміну від y = sin 2 x.

Ця стаття покаже поняття складної функції та її виявлення. Попрацюємо з формулами знаходження похідної із прикладами рішень у висновку. Застосування таблиці похідних та правила диференціювання помітно зменшують час для знаходження похідної.

Основні визначення

Визначення 1

Складною функцією вважається така функція, яка аргумент також є функцією.

Позначається це так: f (g (x)) . Маємо, що функція g(x) вважається аргументом f(g(x)).

Визначення 2

Якщо є функція f і є функцією котангенсу, тоді g(x) = ln x – це функція натурального логарифму. Отримуємо, що складна функція f(g(x)) запишеться як arctg(lnx). Або функція f є функцією зведеної в 4 ступінь, де g (x) = x 2 + 2 x - 3 вважається цілою раціональною функцією, Отримуємо, що f (g (x)) = (x 2 + 2 x - 3) 4 .

Очевидно, що g(x) може бути складною. З прикладу y = sin 2 x + 1 x 3 - 5 видно, що значення g має кубічний корінь із дробом. Даний вираз можна позначати як y = f (f 1 (f 2 (x))) . Звідки маємо, що f – це функція синуса, а f 1 – функція, що розташовується під квадратним коренем, f 2 (x) = 2 x + 1 x 3 – 5 – дробова раціональна функція.

Визначення 3

Ступінь вкладеності визначено будь-яким натуральним числом і записується як y = f (f 1 (f 2 (f 3 (. . . (f n (x))))))))).

Визначення 4

Поняття композиція функції належить до кількості вкладених функцій за умовою завдання. Для вирішення використовується формула знаходження похідної складної функції виду

(f(g(x))) "=f"(g(x)) · g"(x)

Приклади

Приклад 1

Знайти похідну складної функції виду y = (2 x + 1) 2 .

Рішення

За умовою видно, що f є функцією зведення квадрат, а g (x) = 2 x + 1 вважається лінійною функцією.

Застосуємо формулу похідної для складної функції та запишемо:

f "(g (x)) = ((g (x)) 2)" = 2 · (g (x)) 2 - 1 = 2 · g (x) = 2 · (2 ​​x + 1); g " (x) = (2 x + 1) " = (2 x) " + 1 " = 2 · x " + 0 = 2 · 1 · x 1 - 1 = 2 ⇒ (f (g (x))) "= f "(g (x)) · g "(x) = 2 · (2 ​​x + 1) · 2 = 8 x + 4

Необхідно знайти похідну зі спрощеним вихідним виглядом функції. Отримуємо:

y = (2 x + 1) 2 = 4 x 2 + 4 x + 1

Звідси маємо, що

y " = (4 x 2 + 4 x + 1) " = (4 x 2) " + (4 x) " + 1 " = 4 · (x 2) " + 4 · (x) " + 0 = = 4 · 2 · x 2 - 1 + 4 · 1 · x 1 - 1 = 8 x + 4

Результати збіглися.

При вирішенні завдань такого виду важливо розуміти, де розташовуватиметься функція виду f і g (x) .

Приклад 2

Слід знайти похідні складних функцій виду y = sin 2 x та y = sin x 2 .

Рішення

Перший запис функції свідчить, що f є функцією зведення квадрат, а g (x) – функцією синуса. Тоді отримаємо, що

y " = (sin 2 x) " = 2 · sin 2 - 1 x · (sin x) " = 2 · sin x · cos x

Другий запис показує, що f є функцією синуса, а g(x) = x 2 позначаємо статечну функцію. Звідси випливає, що добуток складної функції запишемо як

y " = (sin x 2) " = cos (x 2) · (x 2) " = cos (x 2) · 2 · x 2 - 1 = 2 · x · cos (x 2)

Формула для похідної y = f (f 1 (f 2 (f 3 (. . . (f n (x)))))))) запишеться як y " = f " (f 1 (f 2 (f 3 (. . .) f n (x)))))) · f 1 "(f 2 (f 3 (. . . (f n (x)))))) · · f 2 " (f 3 (. . . (f n (x))) )) · . . . · f n "(x)

Приклад 3

Знайти похідну функції y = sin (ln 3 a r c t g (2 x)).

Рішення

Даний приклад показує складність запису та визначення розташування функцій. Тоді y = f (f 1 (f 2 (f 3 (f 4 (x)))))) позначимо, де f , f 1 , f 2 , f 3 , f 4 (x) є функцією синуса, функцією зведення в 3 ступінь, функцією з логарифмом та основою е, функцією арктангенсу та лінійною.

З формули визначення складної функції маємо, що

y " = f "(f 1 (f 2 (f 3 (f 4 (x))))) · f 1 "(f 2 (f 3 (f 4 (x))))) · · f 2 " (f 3 (f 4 (x))) · f 3 "(f 4 (x)) · f 4 " (x)

Отримуємо, що слід знайти

  1. f" (f 1 (f 2 (f 3 (f 4 (x))))) як похідна синуса по таблиці похідних, тоді f " (f 1 (f 2 (f 3 (f 4 (x))))) ) = cos (ln 3 a r c t g (2 x)).
  2. f 1 "(f 2 (f 3 (f 4 (x)))) як похідну статечну функцію, тоді f 1 "(f 2 (f 3 (f 4 (x)))) = 3 · ln 3 - 1 a r c t g (2 x) = 3 · ln 2 a r c t g (2 x) .
  3. f 2 "(f 3 (f 4 (x))) як похідна логарифмічна, тоді f 2 "(f 3 (f 4 (x))) = 1 a r c t g (2 x) .
  4. f 3 "(f 4 (x)) як похідний арктангенса, тоді f 3 "(f 4 (x)) = 1 1 + (2 x) 2 = 1 1 + 4 x 2 .
  5. При знаходженні похідної f 4 (x) = 2 x зробити винесення 2 за знак похідної із застосуванням формули похідної статечної функції з показником, що дорівнює 1 тоді f 4 " (x) = (2 x) " = 2 · x " = 2 · 1 · x 1 - 1 = 2 .

Проводимо об'єднання проміжних результатів та отримуємо, що

y " = f "(f 1 (f 2 (f 3 (f 4 (x))))) · f 1 "(f 2 (f 3 (f 4 (x))))) · · f 2 " (f 3 (f 4 (x))) · f 3 "(f 4 (x)) · f 4 " (x) = = cos (ln 3 a r c t g (2 x)) · 3 · ln 2 a r c t g (2 x) · 1 a r c t g (2 x) · 1 1 + 4 x 2 · 2 = = 6 · cos (ln 3 a r c t g (2 x)) · ln 2 a r c t g (2 x) a r c t g (2 x) · (1 + 4 x 2)

Розбір таких функцій нагадує матрьошки. Правила диференціювання не завжди можуть бути застосовані у явному вигляді за допомогою таблиці похідних. Найчастіше потрібно застосовувати формулу знаходження похідних складних функцій.

Існують деякі відмінності складного виду складних функцій. При явному вмінні це розрізняти, знаходження похідних даватиме особливо легко.

Приклад 4

Необхідно розглянути на наведенні такого прикладу. Якщо є функція виду y = t g 2 x + 3 t g x + 1 , тоді її можна розглянути як складний вид g (x) = t g x , f (g) = g 2 + 3 g + 1 . Очевидно, що необхідне застосування формули для складної похідної:

f "(g (x)) = (g 2 (x) + 3 g (x) + 1)" = (g 2 (x)) "+ (3 g (x))" + 1 " = = 2 · g 2 - 1 (x) + 3 · g "(x) + 0 = 2 g (x) + 3 · 1 · g 1 - 1 (x) = = 2 g (x) + 3 = 2 t g x + 3; g "(x) = (t g x)" = 1 cos 2 x ⇒ y " = (f (g (x)))" = f "(g (x)) · g "(x) = (2 t g x + 3 ) · 1 cos 2 x = 2 t g x + 3 cos 2 x

Функція виду y = t g x 2 + 3 t g x + 1 не вважається складною, оскільки має суму t g x 2 3 t g x і 1 . Однак, t g x 2 вважається складною функцією, то отримуємо статечну функцію виду g (x) = x 2 і f є функцією тангенса. Для цього слід продиференціювати за сумою. Отримуємо, що

y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + (3 t g x) " + 1 " = = (t g x 2) " + 3 · (t g x) " + 0 = (t g x 2) " + 3 cos 2 x

Переходимо до знаходження похідної складної функції (t g x 2) " :

f "(g (x)) = (t g (g (x)))" = 1 cos 2 g (x) = 1 cos 2 (x 2) g "(x) = (x 2)" = 2 · x 2 - 1 = 2 x ⇒ (t g x 2) "= f "(g (x)) · g "(x) = 2 x cos 2 (x 2)

Отримуємо, що y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + 3 cos 2 x = 2 x cos 2 (x 2) + 3 cos 2 x

Функції складного виду можуть бути включені до складу складних функцій, причому самі складні функції можуть бути складовими складного функції.

Приклад 5

Наприклад розглянемо складну функцію виду y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x · (x 2 + 1)

Ця функція може бути представлена ​​у вигляді y = f (g (x)) , де значення f є функцією логарифму на підставі 3 , а g (x) вважається сумою двох функцій виду h (x) = x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 і k(x) = ln 2 x · (x 2 + 1) . Очевидно, що y = f(h(x) + k(x)) .

Розглянемо функцію h(x) . Це відношення l(x) = x 2 + 3 cos 3 (2 x + 1) + 7 к m (x) = e x 2 + 3 3

Маємо, що l(x) = x 2 + 3 cos 2 (2 x + 1) + 7 = n(x) + p(x) є сумою двох функцій n(x) = x 2 + 7 та p(x) = 3 cos 3 (2 x + 1) , де p (x) = 3 · p 1 (p 2 (p 3 (x))) є складною функцією з числовим коефіцієнтом 3 а p 1 - функцією зведення в куб, p 2 функцією косинуса, p 3 (x) = 2 x + 1 – лінійною функцією.

Отримали, що m (x) = e x 2 + 3 3 = q (x) + r (x) є сумою двох функцій q (x) = e x 2 і r (x) = 3 3 де q (x) = q 1 (q 2 (x)) – складна функція, q 1 – функція з експонентою, q 2 (x) = x 2 – статечна функція.

Звідси видно, що h (x) = l (x) m (x) = n (x) + p (x) q (x) + r (x) = n (x) + 3 · p 1 (p 2 ( p 3 (x))) q 1 (q 2 (x)) + r (x)

При переході до виразу виду k(x) = ln 2 x · (x 2 + 1) = s (x) · t (x) видно, що функція представлена ​​у вигляді складної s(x) = ln 2 x = s 1 ( s 2 (x)) з цілою раціональною t (x) = x 2 + 1 , де s 1 є функцією зведення в квадрат, а s 2 (x) = ln x - логарифмічної з основою е.

Звідси випливає, що вираз набуде вигляду k (x) = s (x) · t (x) = s 1 (s 2 (x)) · t (x) .

Тоді отримаємо, що

y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x · (x 2 + 1) = = f n (x) + 3 · p 1 (p 2 (p 3 (x))) q 1 (q 2 (x)) = r (x) + s 1 (s 2 (x)) · t (x)

За структурами функції стало явно, як і які формули необхідно застосовувати для спрощення вираження за його диференціювання. Для ознайомлення подібних завдань і для поняття їх вирішення необхідно звернутися до пункту диференціювання функції, тобто знаходження її похідної.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Якщо слідувати визначенню, то похідна функції у точці — це межа відношення збільшення функції Δ yдо збільшення аргументу Δ x:

Начебто все зрозуміло. Але спробуйте порахувати за цією формулою, скажімо, похідну функції f(x) = x 2 + (2x+ 3) · e x· sin x. Якщо все робити за визначенням, то через кілька сторінок обчислень ви просто заснете. Тому існують простіші та ефективніші способи.

Спочатку зазначимо, що з усього різноманіття функцій можна назвати звані елементарні функції. Це відносно прості вирази, похідні яких давно обчислені та занесені до таблиці. Такі функції досить просто запам'ятати — разом із їх похідними.

Похідні елементарних функцій

Елементарні функції – це все, що наведено нижче. Похідні цих функцій треба знати напам'ять. Тим більше, що завчити їх зовсім нескладно — на те вони й елементарні.

Отже, похідні елементарних функцій:

Назва Функція Похідна
Константа f(x) = C, CR 0 (так-так, нуль!)
Ступінь із раціональним показником f(x) = x n n · x n − 1
Сінус f(x) = sin x cos x
Косінус f(x) = cos x − sin x(мінус синус)
Тангенс f(x) = tg x 1/cos 2 x
Котангенс f(x) = ctg x − 1/sin 2 x
Натуральний логарифм f(x) = ln x 1/x
Довільний логарифм f(x) = log a x 1/(x· ln a)
Показова функція f(x) = e x e x(нічого не змінилось)

Якщо елементарну функцію помножити на довільну постійну, то похідна нової функції також легко вважається:

(C · f)’ = C · f ’.

Загалом константи можна виносити за знак похідної. Наприклад:

(2x 3)' = 2 · ( x 3)' = 2 · 3 x 2 = 6x 2 .

Очевидно, елементарні функції можна складати одна з одною, множити, ділити і багато іншого. Так з'являться нові функції, не особливо елементарні, але теж диференційовані за певними правилами. Ці правила розглянуті нижче.

Похідна суми та різниці

Нехай дані функції f(x) та g(x), похідні яких нам відомі. Наприклад, можна взяти елементарні функції, розглянуті вище. Тоді можна знайти похідну суми та різниці цих функцій:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

Отже, похідна суми (різниці) двох функцій дорівнює сумі (різниці) похідних. Доданків може бути більше. Наприклад, ( f + g + h)’ = f ’ + g ’ + h ’.

Строго кажучи, в алгебрі немає поняття «віднімання». Є поняття «негативний елемент». Тому різниця fgможна переписати як суму f+ (−1) · gі тоді залишиться лише одна формула — похідна суми.

f(x) = x 2 + sin x; g(x) = x 4 + 2x 2 − 3.

Функція f(x) - це сума двох елементарних функцій, тому:

f ’(x) = (x 2 + sin x)’ = (x 2)' + (sin x)’ = 2x+ cos x;

Аналогічно міркуємо для функції g(x). Тільки там уже три доданки (з погляду алгебри):

g ’(x) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · ( x 2 + 1).

Відповідь:
f ’(x) = 2x+ cos x;
g ’(x) = 4x · ( x 2 + 1).

Похідна робота

Математика - наука логічна, тому багато хто вважає, що якщо похідна суми дорівнює сумі похідних, то похідна твори strike"> дорівнює твору похідних. А ось фіг вам! Похідна твори вважається зовсім за іншою формулою. А саме:

(f · g) ’ = f ’ · g + f · g

Формула проста, але її часто забувають. І не лише школярі, а й студенти. Результат – неправильно вирішені завдання.

Завдання. Знайти похідні функції: f(x) = x 3 · cos x; g(x) = (x 2 + 7x− 7) · e x .

Функція f(x) є твір двох елементарних функцій, тому все просто:

f ’(x) = (x 3 · cos x)’ = (x 3)' · cos x + x 3 · (cos x)’ = 3x 2 · cos x + x 3 · (− sin x) = x 2 · (3cos xx· sin x)

У функції g(x) перший множник трохи складніше, але загальна схема від цього не змінюється. Очевидно, перший множник функції g(x) є багаточлен, і його похідна - це похідна суми. Маємо:

g ’(x) = ((x 2 + 7x− 7) · e x)’ = (x 2 + 7x− 7)' · e x + (x 2 + 7x− 7) · ( e x)’ = (2x+ 7) · e x + (x 2 + 7x− 7) · e x = e x· (2 x + 7 + x 2 + 7x −7) = (x 2 + 9x) · e x = x(x+ 9) · e x .

Відповідь:
f ’(x) = x 2 · (3cos xx· sin x);
g ’(x) = x(x+ 9) · e x .

Зверніть увагу, що на останньому етапі похідна розкладається на множники. Формально цього робити не потрібно, проте більшість похідних обчислюються не власними силами, а щоб дослідити функцію. А значить, далі похідна прирівнюватиметься до нуля, з'ясовуватимуться її знаки і так далі. Для такої справи краще мати вираз, розкладений на множники.

Якщо є дві функції f(x) та g(x), причому g(x) ≠ 0 на цікавій для нас безлічі, можна визначити нову функцію h(x) = f(x)/g(x). Для такої функції також можна знайти похідну:

Неслабо, так? Звідки взявся мінус? Чому g 2? А ось так! Це одна із найскладніших формул — без пляшки не розберешся. Тому краще вивчати її на конкретні приклади.

Завдання. Знайти похідні функції:

У чисельнику та знаменнику кожного дробу стоять елементарні функції, тому все, що нам потрібно – це формула похідної частки:


За традицією, розкладемо чисельник на множники — це значно спростить відповідь:

Складна функція - це не обов'язково формула завдовжки півкілометра. Наприклад, достатньо взяти функцію f(x) = sin xта замінити змінну x, скажімо, на x 2 + ln x. Вийде f(x) = sin ( x 2 + ln x) - це і є складна функція. Вона теж має похідну, проте знайти її за правилами, розглянутими вище, не вийде.

Як бути? У таких випадках допомагає заміна змінної та формула похідної складної функції:

f ’(x) = f ’(t) · t', якщо xзамінюється на t(x).

Як правило, з розумінням цієї формули справа ще сумніше, ніж з похідною приватного. Тому її також краще пояснити на конкретних прикладах, з докладним описом кожного кроку.

Завдання. Знайти похідні функції: f(x) = e 2x + 3 ; g(x) = sin ( x 2 + ln x)

Зауважимо, що якщо у функції f(x) замість виразу 2 x+ 3 буде просто x, то вийде елементарна функція f(x) = e x. Тому робимо заміну: нехай 2 x + 3 = t, f(x) = f(t) = e t. Шукаємо похідну складної функції за формулою:

f ’(x) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

А тепер – увага! Виконуємо зворотну заміну: t = 2x+ 3. Отримаємо:

f ’(x) = e t · t ’ = e 2x+ 3 · (2 x + 3)’ = e 2x+ 3 · 2 = 2 · e 2x + 3

Тепер розберемося із функцією g(x). Очевидно, треба замінити x 2 + ln x = t. Маємо:

g ’(x) = g ’(t) · t' = (sin t)’ · t' = cos t · t

Зворотна заміна: t = x 2 + ln x. Тоді:

g ’(x) = cos ( x 2 + ln x) · ( x 2 + ln x)’ = cos ( x 2 + ln x) · (2 x + 1/x).

От і все! Як очевидно з останнього висловлювання, все завдання звелося до обчислення похідної суми.

Відповідь:
f ’(x) = 2 · e 2x + 3 ;
g ’(x) = (2x + 1/x) · cos ( x 2 + ln x).

Дуже часто на своїх уроках замість терміну "похідна" я використовую слово "штрих". Наприклад, штрих від суми дорівнює сумі штрихів. Так зрозуміліше? Ну от і добре.

Таким чином, обчислення похідної зводиться до позбавлення цих самих штрихів за правилами, розглянутими вище. Як останній приклад повернемося до похідного ступеня з раціональним показником:

(x n)’ = n · x n − 1

Мало хто знає, що в ролі nцілком може виступати дрібне число. Наприклад, корінь - це x 0,5. А що, коли під корінням стоятиме щось наворочене? Знову вийде складна функція – такі конструкції люблять давати на контрольних робітах та іспитах.

Завдання. Знайти похідну функції:

Для початку перепишемо корінь у вигляді ступеня з раціональним показником:

f(x) = (x 2 + 8x − 7) 0,5 .

Тепер робимо заміну: нехай x 2 + 8x − 7 = t. Знаходимо похідну за формулою:

f ’(x) = f ’(t) · t ’ = (t 0,5)' · t' = 0,5 · t−0,5 · t ’.

Робимо зворотну заміну: t = x 2 + 8x− 7. Маємо:

f ’(x) = 0,5 · ( x 2 + 8x− 7) −0,5 · ( x 2 + 8x− 7)' = 0,5 · (2 x+ 8) · ( x 2 + 8x − 7) −0,5 .

Нарешті, повертаємось до коріння:

І теорему про похідну складну функцію, формулювання якої така:

Нехай 1) функція $u=\varphi (x)$ має у певній точці $x_0$ похідну $u_(x)"=\varphi"(x_0)$; 2) функція $y=f(u)$ має у відповідній точці $u_0=\varphi (x_0)$ похідну $y_(u)"=f"(u)$. Тоді складна функція $y=f\left(\varphi (x) \right)$ у згаданій точці також матиме похідну, рівну добутку похідних функцій $f(u)$ і $\varphi (x)$:

$$ \left(f(\varphi (x))\right)"=f_(u)"\left(\varphi (x_0) \right)\cdot \varphi"(x_0) $$

або, у більш короткому записі: $y_(x)"=y_(u)"\cdot u_(x)"$.

У прикладах цього розділу всі функції мають вигляд $y=f(x)$ (тобто розглядаємо лише функції однієї змінної $x$). Відповідно, у всіх прикладах похідна $y"$ береться за змінною $x$. Щоб підкреслити те, що похідна береться за змінною $x$, часто замість $y"$ пишуть $y"_x$.

У прикладах №1, №2 та №3 викладено докладний процес знаходження похідної складних функцій. Приклад №4 призначений більш повного розуміння таблиці похідних і з ним має сенс ознайомитися.

Бажано після вивчення матеріалу у прикладах №1-3 перейти до самостійного рішення прикладів №5, №6 та №7. Приклади №5, №6 та №7 містять коротке рішення, щоб читач міг перевірити правильність свого результату.

Приклад №1

Знайти похідну функції $y=e^(\cos x)$.

Нам потрібно знайти похідну складної функції $y"$. Оскільки $y=e^(\cos x)$, то $y"=\left(e^(\cos x)\right)"$. Щоб знайти похідну $ \left(e^(\cos x)\right)"$ використовуємо формулу №6 з таблиці похідних . Щоб використати формулу №6, потрібно врахувати, що в нашому випадку $u=\cos x$. Подальше рішення полягає у банальній підстановці у формулу №6 виразу $\cos x$ замість $u$:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)" \tag (1.1)$$

Тепер потрібно знайти значення виразу $(\cos x)"$. Знову звертаємося до таблиці похідних, вибираючи з неї формулу №10. Підставляючи $u=x$ у формулу №10, маємо: $(\cos x)"=-\ sin x\cdot x"$. Тепер продовжимо рівність (1.1), доповнивши його знайденим результатом:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x") \tag (1.2) $$

Оскільки $x"=1$, то продовжимо рівність (1.2):

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x")=e^(\cos x)\cdot (-\sin x\cdot 1)=-\sin x\cdot e^(\cos x) \tag (1.3) $$

Отже, з рівності (1.3) маємо: $y"=-\sin x\cdot e^(\cos x)$. Природно, що пояснення та проміжні рівності зазвичай пропускають, записуючи перебування похідної в один рядок, - як у рівності ( 1.3) Отже, похідна складної функції знайдена, залишилося лише записати відповідь.

Відповідь: $y"=-\sin x\cdot e^(\cos x)$.

Приклад №2

Знайти похідну функції $y=9\cdot \arctg^(12)(4\cdot \ln x)$.

Нам необхідно обчислити похідну $y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"$. Спочатку відзначимо, що константу (тобто число 9) можна винести за знак похідної:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)" \tag (2.1) $$

Тепер звернемося до виразу $\left(\arctg^(12)(4\cdot \ln x) \right)"$. Щоб вибрати потрібну формулу з таблиці похідних було легше, я представлю вираз, що розглядається в такому вигляді: $\left( \left(\arctg(4\cdot \ln x) \right)^(12)\right)"$. Тепер видно, що потрібно використовувати формулу №2, тобто. $\left(u^\alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. У цю формулу підставимо $u=\arctg(4\cdot \ln x)$ і $\alpha=12$:

Доповнюючи рівність (2.1) отриманим результатом, маємо:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"= 108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))" \tag (2.2) $$

У цій ситуації часто допускається помилка, коли вирішувач на першому кроці вибирає формулу $(\arctg \; u)"=\frac(1)(1+u^2)\cdot u"$ замість формули $\left(u^\ alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. Справа в тому, що першою повинна бути похідна зовнішньої функції. Щоб зрозуміти, яка саме функція буде зовнішньою для вираження $\arctg^(12)(4\cdot 5^x)$, уявіть, що ви вважаєте значення виразу $\arctg^(12)(4\cdot 5^x)$ за якогось значення $x$. Спочатку ви порахуєте значення $5^x$, потім помножите результат на 4, отримавши $4\cdot 5^x$. Тепер від цього результату беремо арктангенс, отримавши $ arcctg (4 cdot 5 ^ x) $. Потім зводимо отримане число в дванадцятий ступінь, отримуючи $ arctg (12) (4 cdot 5 x) $. Остання дія, - тобто. зведення у ступінь 12, - і буде зовнішньою функцією. І саме з неї слід починати перебування похідної, що було зроблено рівності (2.2).

Тепер потрібно знайти $(\arctg(4\cdot \ln x))"$. Використовуємо формулу №19 таблиці похідних, підставивши в неї $u=4\cdot \ln x$:

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)" $$

Трохи спростимо отриманий вираз, враховуючи $(4\cdot \ln x)^2=4^2\cdot (\ln x)^2=16\cdot \ln^2 x$.

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)"=\frac( 1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" $$

Рівність (2.2) тепер стане такою:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" \tag (2.3) $$

Залишилося знайти $(4\cdot \ln x)"$. Винесемо константу (тобто 4) за знак похідної: $(4\cdot \ln x)"=4\cdot (\ln x)"$. того, щоб знайти $(\ln x)"$ використовуємо формулу №8, підставивши в неї $u=x$: $(\ln x)"=\frac(1)(x)\cdot x"$. Оскільки $x"=1$, то $(\ln x)"=\frac(1)(x)\cdot x"=\frac(1)(x)\cdot 1=\frac(1)(x )$.Підставивши отриманий результат у формулу (2.3), отримаємо:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" =\\ =108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot 4\ cdot \frac(1)(x)=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x)). $

Нагадаю, що похідна складної функції найчастіше знаходиться в один рядок - як записано в останній рівності. Тому при оформленні типових розрахунків або контрольних робіт зовсім не обов'язково розписувати рішення так само детально.

Відповідь: $y"=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x))$.

Приклад №3

Знайти $y"$ функції $y=\sqrt(\sin^3(5\cdot9^x))$.

Для початку трохи змінимо функцію $y$, висловивши радикал (корінь) у вигляді ступеня: $y=\sqrt(\sin^3(5\cdot9^x))=\left(\sin(5\cdot 9^x) \right)^(\frac(3)(7))$. Тепер приступимо до знаходження похідної. Оскільки $y=\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))$, то:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)" \tag (3.1) $$

Використовуємо формулу №2 з таблиці похідних , підставивши до неї $u=\sin(5\cdot 9^x)$ і $\alpha=\frac(3)(7)$:

$$ \left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"= \frac(3)(7)\cdot \left( \sin(5\cdot 9^x)\right)^(\frac(3)(7)-1) (\sin(5\cdot 9^x))"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" $$

Продовжимо рівність (3.1), використовуючи отриманий результат:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" \tag (3.2) $$

Тепер потрібно знайти $(\sin(5\cdot 9^x))"$. Використовуємо для цього формулу №9 з похідних таблиці, підставивши в неї $u=5\cdot 9^x$:

$$ (\sin(5\cdot 9^x))"=\cos(5\cdot 9^x)\cdot(5\cdot 9^x)" $$

Доповнивши рівність (3.2) отриманим результатом, маємо:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)" \tag (3.3) $$

Залишилося знайти $(5\cdot 9^x)"$. Для початку винесемо константу (число $5$) за знак похідної, тобто $(5\cdot 9^x)"=5\cdot (9^x) "$. Для знаходження похідної $(9^x)"$ застосуємо формулу №5 таблиці похідних, підставивши до неї $a=9$ і $u=x$: $(9^x)"=9^x\cdot \ ln9\cdot x"$. Оскільки $x"=1$, то $(9^x)"=9^x\cdot \ln9\cdot x"=9^x\cdot \ln9$. Тепер можна продовжити рівність (3.3):

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)"= \frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9 ^x)\cdot 5\cdot 9^x\cdot \ln9=\\ =\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right) ^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x. $$

Можна знову від ступенів повернутися до радикалів (тобто коріння), записавши $\left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))$ у вигляді $\ frac(1)(\left(\sin(5\cdot 9^x)\right)^(\frac(4)(7)))=\frac(1)(\sqrt(\sin^4(5\) cdot 9^x)))$. Тоді похідна буде записана у такій формі:

$$ y"=\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x= \frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x) (\sqrt(\sin^4(5\cdot 9^x))).$$

Відповідь: $y"=\frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x)(\sqrt(\sin^4(5\) cdot 9^x)))$.

Приклад №4

Показати, що формули №3 і №4 таблиці похідних є окремий випадок формули №2 цієї таблиці.

У формулі №2 таблиці похідних записано похідну функцію $u^\alpha$. Підставляючи $\alpha=-1$ у формулу №2, отримаємо:

$$(u^(-1))"=-1\cdot u^(-1-1)\cdot u"=-u^(-2)\cdot u"\tag (4.1)$$

Оскільки $u^(-1)=\frac(1)(u)$ і $u^(-2)=\frac(1)(u^2)$, то рівність (4.1) можна переписати так: $ \left(\frac(1)(u) \right)"=-\frac(1)(u^2)\cdot u"$. Це і є формула №3 таблиці похідних.

Знову звернемося до формули №2 таблиці похідних. Підставимо до неї $\alpha=\frac(1)(2)$:

$$\left(u^(\frac(1)(2))\right)"=\frac(1)(2)\cdot u^(\frac(1)(2)-1)\cdot u" =\frac(1)(2)u^(-\frac(1)(2))\cdot u"\tag (4.2) $$

Оскільки $u^(\frac(1)(2))=\sqrt(u)$ і $u^(-\frac(1)(2))=\frac(1)(u^(\frac( 1)(2)))=\frac(1)(\sqrt(u))$, то рівність (4.2) можна переписати в такому вигляді:

$$ (\sqrt(u))"=\frac(1)(2)\cdot \frac(1)(\sqrt(u))\cdot u"=\frac(1)(2\sqrt(u) )\cdot u" $$

Отримана рівність $(sqrt(u))"=\frac(1)(2sqrt(u))cdot u"$ і є формула №4 таблиці похідних. Як бачите, формули №3 та №4 таблиці похідних виходять із формули №2 підстановкою відповідного значення $ alfa $.

gastroguru 2017