Все, що потрібно знати про логарифмічні нерівності. Складні логарифмічні нерівності. Розв'язання логарифмічних нерівностей

Логарифмічні нерівності

На попередніх уроках ми з вами познайомилися з логарифмічними рівняннями і тепер знаємо, що таке і як вирішувати. А сьогоднішній урок буде присвячено вивченню логарифмічних нерівностей. Що ж це за такі нерівності та у чому різниця між рішенням логарифмічного рівняння та нерівності?

Логарифмічні нерівності - це нерівності, які мають змінну, що стоїть під знаком логарифму або на його підставі.

Або ж, можна ще сказати, що логарифмічна нерівність – це така нерівність, в якій його невідома величина, як і в логарифмічному рівнянні, стоятиме під знаком логарифму.

Найпростіші логарифмічні нерівності мають такий вигляд:

де f(x) та g(x) є деякими виразами, які залежать від x.

Давайте це розглянемо такий приклад: f(x)=1+2x+x2, g(x)=3x−1.

Розв'язання логарифмічних нерівностей

Перед розв'язанням логарифмічних нерівностей, слід зазначити, що вони при вирішенні мають схожість із показовими нерівностями, а саме:

По-перше, при переході від логарифмів до виразів, що стоять під знаком логарифму, нам також необхідно порівняти основу логарифму з одиницею;

По-друге, вирішуючи логарифмічну нерівність, використовуючи заміну змінних, нам необхідно вирішувати нерівності щодо заміни до того моменту, поки ми не отримаємо найпростішу нерівність.

Але це ми з вами розглянули подібні моменти розв'язання логарифмічних нерівностей. А зараз звернемо увагу на досить істотну відмінність. Нам з вами відомо, що логарифмічна функція має обмежену область визначення, тому переходячи від логарифмів до виразів, що стоять під знаком логарифму, потрібно брати до уваги область допустимих значень (ОДЗ).

Тобто слід враховувати, що вирішуючи логарифмічне рівняння ми з вами, можемо спочатку знаходити коріння рівняння, а потім перевірити це рішення. А ось вирішити логарифмічну нерівність так не вийде, оскільки, переходячи від логарифмів до виразів, що стоять під знаком логарифму, необхідно буде записувати ОДЗ нерівності.

Також варто запам'ятати, що теорія нерівностей складається з дійсних чисел, якими є позитивні та негативні числа, а також число 0.

Наприклад, коли число «а» є позитивним, необхідно використовувати такий запис: a >0. І тут, як сума, і добуток таких цих чисел також будуть позитивними.

Основним принципом розв'язання нерівності є його заміна більш просте нерівність, але головне, щоб воно було рівносильне даному. Далі, також ми здобули нерівність і знову її замінили на ту, яка має більш простий вигляд і т.д.

Вирішуючи нерівності зі змінною необхідно шукати всі його рішення. Якщо дві нерівності мають одну змінну х, то такі нерівності рівносильні, за умови, що їхні розв'язки збігаються.

Виконуючи завдання на розв'язання логарифмічних нерівностей, необхідно запам'ятати, що a > 1, то логарифмічна функція зростає, а коли 0< a < 1, то такая функция имеет свойство убывать. Эти свойства вам будут необходимы при решении логарифмических неравенств, поэтому вы их должны хорошо знать и помнить.

Способи розв'язання логарифмічних нерівностей

Тепер розглянемо деякі методи, які мають місце при розв'язанні логарифмічних нерівностей. Для кращого розуміння та засвоєння, спробуємо у них розібратися на конкретних прикладах.

Нам з вами відомо, що найпростіша логарифмічна нерівність має такий вигляд:

У цій нерівності V – є одним із таких знаків нерівності, як:<,>, ≤ або ≥.

Коли основа даного логарифму більше одиниці (a>1), здійснюючи перехід від логарифмів до виразів, що стоять під знаком логарифму, то в цьому варіанті знак нерівності зберігається, і нерівність матиме такий вигляд:

що рівносильно такій ось системі:


У разі ж, коли основа логарифму більша за нуль і менша за одиницю (0

Це рівносильно даній системі:


Подивимося ще приклади вирішення найпростіших логарифмічних нерівностей, наведених на малюнку нижче:



Рішення прикладів

Завдання.Давайте спробуємо вирішити таку ось нерівність:


Вирішення області допустимих значень.


Тепер спробуємо помножити його праву частину на:

Дивимося, що в нас вийде:



Тепер, давайте з вами перейдемо до перетворення підлогарифмічних виразів. У зв'язку з тим, що основа логарифму 0< 1/4 <1, то от сюда следует, что знак неравенства изменится на противоположный:

3x – 8 > 16;
3x > 24;
х > 8.

А з цього випливає, що інтервал, який ми отримали, повністю належить ОДЗ і є вирішенням такої нерівності.

Ось яка відповідь у нас вийшла:


Що необхідно для вирішення логарифмічних нерівностей?

А тепер спробуємо проаналізувати, що нам необхідно для успішного вирішення логарифмічних нерівностей?

По-перше, зосередити всю свою увагу і постаратися не допускати помилок при виконанні перетворень, які дано у цій нерівності. Також слід запам'ятати, що при вирішенні таких нерівностей потрібно не допускати розширень і звужень ОДЗ нерівності, які можуть призвести до втрати або придбання сторонніх рішень.

По-друге, при розв'язанні логарифмічних нерівностей необхідно навчитися мислити логічно та розуміти різницю між такими поняттями, як система нерівностей та сукупність нерівностей, щоб ви без проблем змогли здійснювати відбір розв'язків нерівності, при цьому керуючись її ОДЗ.

По-третє, для успішного вирішення таких нерівностей кожен з вас повинен добре знати всі властивості елементарних функцій і чітко розуміти їхній сенс. До таких функцій відносяться не тільки логарифмічні, а й раціональні, статечні, тригонометричні і т.д., одним словом, всі ті, що ви вивчали протягом алгебри шкільного навчання.

Як бачите, вивчивши тему про логарифмічні нерівності, у вирішенні цих нерівностей немає нічого складного за умови, якщо ви будете уважні та наполегливі у досягненні поставлених цілей. Щоб у вирішенні нерівностей не виникало жодних проблем, потрібно якнайбільше тренуватися, вирішуючи різні завдання і при цьому запам'ятовувати основні способи вирішення таких нерівностей та їх систем. При невдалих рішеннях логарифмічних нерівностей слід уважно проаналізувати свої помилки, щоб у майбутньому не повертатися до них знову.

Домашнє завдання

Для кращого засвоєння теми та закріплення пройденого матеріалу вирішіть наступні нерівності:


ЛОГАРИФМІЧНІ НЕРАВЕНСТВА В ЄДІ

Сечин Михайло Олександрович

Мала академія наук учнівської молоді РК «Шукач»

МБОУ «Радянська ЗОШ №1», 11 клас, смт. Радянський Радянського району

Гунько Людмила Дмитрівна, вчитель МБОУ «Радянська ЗОШ №1»

Радянського району

Мета роботи:дослідження механізму розв'язання логарифмічних нерівностей С3 за допомогою нестандартних методів; виявлення цікавих фактів логарифму.

Предмет дослідження:

3) Навчитися вирішувати конкретні логарифмічні нерівності С3 за допомогою нестандартних методів.

Результати:

Зміст

Введение………………………………………………………………………….4

Глава 1. Історія питання……………………………………………………...5

Глава 2. Збірник логарифмічних нерівностей ………………………… 7

2.1. Рівносильні переходи та узагальнений метод інтервалів…………… 7

2.2. Метод раціоналізації ………………………………………………… 15

2.3. Нестандартна підстановка……………….......................................... ..... 22

2.4. Завдання з пастками…………………………………………………… 27

Заключение…………………………………………………………………… 30

Література……………………………………………………………………. 31

Вступ

Я навчаюсь в 11 класі і планую вступити до ВНЗ, де профільним предметом є математика. А тому багато працюю із завданнями частини С. У завданні С3 потрібно вирішити нестандартну нерівність або систему нерівностей, як правило, пов'язану з логарифмами. При підготовці до іспиту я зіткнувся з проблемою дефіциту методів та прийомів розв'язання екзаменаційних логарифмічних нерівностей, пропонованих у С3. Методи, які вивчаються у шкільній програмі з цієї теми, не дають основи для вирішення завдань С3. Вчитель з математики запропонувала мені попрацювати із завданнями С3 самостійно під її керівництвом. Крім цього, мене зацікавило питання: а в нашому житті зустрічаються логарифми?

З огляду на це і була обрана тема:

«Логарифмічні нерівності в ЄДІ»

Мета роботи:дослідження механізму розв'язання задач С3 за допомогою нестандартних методів; виявлення цікавих фактів логарифму.

Предмет дослідження:

1) Знайти необхідні відомості про нестандартні методи розв'язання логарифмічних нерівностей.

2) Знайти додаткові відомості про логарифми.

3) Навчитися вирішувати конкретні завдання С3 за допомогою нестандартних методів.

Результати:

Практична значимість полягає у розширенні апарату для вирішення задач С3. Даний матеріал можна використовувати на деяких уроках, для проведення гуртків, факультативних занять з математики.

Проектним продуктом стане збірка "Логарифмічні нерівності С3 з рішеннями".

Розділ 1. Історія питання

Протягом 16 століття швидко зростала кількість наближених обчислень насамперед в астрономії. Удосконалення інструментів, дослідження планетних рухів та інші роботи вимагали колосальних, іноді багаторічних розрахунків. Астрономії загрожувала реальна небезпека потонути у невиконаних розрахунках. Труднощі виникали і в інших областях, наприклад, у страховій справі потрібні були таблиці складних відсотків для різних значень відсотка. Головну складність представляли множення, розподіл багатозначних чисел, особливо тригонометричних величин.

Відкриття логарифмів спиралося добре відомі до кінця 16 століття властивості прогресій. Про зв'язок між членами геометричної прогресії q, q2, q3, ... та арифметичною прогресією їх показників 1, 2, 3,... говорив ще у "Псалміті" Архімед. Іншою причиною було поширення поняття ступеня на негативні та дробові показники. Багато авторів вказували, що множення, поділу, зведення в ступінь і вилучення кореня в геометричній прогресії відповідають в арифметичній - в тому ж порядку - додавання, віднімання, множення та поділ.

Тут ховалася ідея логарифму як показника ступеня.

У розвитку вчення про логарифмах пройшло кілька етапів.

1 етап

Логарифми були винайдені пізніше 1594 року незалежно друг від друга шотландським бароном Непером (1550-1617) і десять років швейцарським механіком Бюрги (1552-1632). Обидва хотіли дати новий зручний засіб арифметичних обчислень, хоча вони підійшли до цього завдання по-різному. Непер кінематично висловив логарифмічну функцію і тим самим вступив у нову область теорії функції. Бюргі залишився грунті розгляду дискретних прогресій. Втім, визначення логарифму в обох не схоже на сучасне. Термін "логарифм" (logarithmus) належить Неперу. Він виник із поєднання грецьких слів: logos - "ставлення" і ariqmo - "число", яке означало "число відносин". Спочатку Непер користувався іншим терміном: numeri artificiales - "штучні числа", на противагу numeri naturalts - "числам природним".

У 1615 року у розмові з професором математики Грешем Коледжу у Лондоні Генрі Брігсом (1561-1631) Непер запропонував прийняти за логарифм одиниці нуль, а й за логарифм десяти - 100, чи, що зводиться до того ж, просто 1. Так виникли десяткові логариф було надруковано перші логарифмічні таблиці. Пізніше таблиці Брігса доповнив голландський книготорговець та аматор математики Андріан Флакк (1600-1667). Непер і Брігс, хоча прийшли до логарифм раніше за всіх, опублікували свої таблиці пізніше за інших - в 1620 році. Знаки log і Log були введені в 1624 І. Кеплером. Термін "натуральний логарифм" запровадили Менголі в 1659 р. і за ним М. Меркатор в 1668 р., а видав таблиці натуральних логарифмів чисел від 1 до 1000 під назвою "Нові логарифми" лондонський вчитель Джон Спейдел.

Російською мовою перші логарифмічні таблиці було видано 1703 року. Але у всіх логарифмічних таблицях було допущено помилки при обчисленні. Перші безпомилкові таблиці вийшли в 1857 в Берліні в обробці німецького математика К. Бремікера (1804-1877).

2 етап

Подальший розвиток теорії логарифмів пов'язаний з ширшим застосуванням аналітичної геометрії та обчислення нескінченно малих. На той час належить встановлення зв'язку між квадратурою рівносторонньої гіперболи та натуральним логарифмом. Теорія логарифмів цього періоду пов'язана з іменами цілого ряду математиків.

Німецький математик, астроном та інженер Ніколаус Меркатор у творі

"Логарифмотехніка" (1668) наводить ряд, що дає розкладання ln(x+1)

ступеням х:

Це вираз точно відповідає ходу його думки, хоча він, звичайно, користувався не знаками d, ... , а більш громіздкою символікою. З відкриттям логарифмічного ряду змінилася техніка обчислення логарифмів: вони стали визначатися з допомогою нескінченних рядів. У своїх лекціях "Елементарна математика з найвищої точки зору", прочитаних у 1907-1908 роках, Ф. Клейн запропонував використовувати формулу як вихідний пункт побудови теорії логарифмів.

3 етап

Визначення логарифмічної функції як зворотної функції

показовою, логарифма як показника ступеня даної основи

було сформульовано не відразу. Твір Леонарда Ейлера (1707-1783)

"Введення в аналіз нескінченно малих" (1748) послужило подальшому

розвитку теорії логарифмічної функції Таким чином,

пройшло 134 роки з того часу, як логарифми вперше були введені

(вважаючи з 1614 р.), перш ніж математики дійшли визначення

поняття логарифму, яке покладено тепер основою шкільного курсу.

Глава 2. Збірник логарифмічних нерівностей

2.1. Рівносильні переходи та узагальнений метод інтервалів.

Рівносильні переходи

якщо а > 1

якщо 0 < а < 1

Узагальнений метод інтервалів

Даний спосіб найбільш універсальний під час вирішення нерівностей практично будь-якого типу. Схема рішення виглядає так:

1. Привести нерівність до такого виду, де у лівій частині знаходиться функція
, а правої 0.

2. Знайти область визначення функції
.

3. Знайти нулі функції
, тобто – вирішити рівняння
(а розв'язувати рівняння зазвичай простіше, ніж розв'язувати нерівність).

4. Зобразити на числовий прямий область визначення та нулі функції.

5. Визначити знаки функції
на одержаних інтервалах.

6. Вибрати інтервали, де функція набуває необхідних значень, і записати відповідь.

приклад 1.

Рішення:

Застосуємо метод інтервалів

звідки

При цих значеннях усі вирази, що стоять під знаками логарифмів, є позитивними.

Відповідь:

приклад 2.

Рішення:

1-й спосіб . ОДЗ визначається нерівністю x> 3. Логарифмуючи за таких xна підставі 10, отримуємо

Остання нерівність можна було вирішувати, застосовуючи правила розкладання, тобто. порівнюючи з нулем співмножники. Однак у даному випадку легко визначити інтервали знаковості функції

тому можна застосувати спосіб інтервалів.

Функція f(x) = 2x(x- 3,5)lgǀ x- 3ǀ безперервна при x> 3 і звертається в нуль у точках x 1 = 0, x 2 = 3,5, x 3 = 2, x 4 = 4. Таким чином, визначаємо інтервали знаковості функції f(x):

Відповідь:

2-й спосіб . Застосуємо безпосередньо до вихідної нерівності ідеї способу інтервалів.

Для цього нагадаємо, що вирази a b - a c і ( a - 1)(b– 1) мають один знак. Тоді наша нерівність при x> 3 рівносильно нерівності

або

Остання нерівність вирішується методом інтервалів

Відповідь:

Приклад 3.

Рішення:

Застосуємо метод інтервалів

Відповідь:

Приклад 4.

Рішення:

Оскільки 2 x 2 - 3x+ 3 > 0 за всіх дійсних x, то

Для вирішення другої нерівності скористаємося методом інтервалів

У першій нерівності зробимо заміну

тоді приходимо до нерівності 2y 2 - y - 1 < 0 и, применив метод интервалов, получаем, что решениями будут те y, які задовольняють нерівності -0,5< y < 1.

Звідки, тому що

отримуємо нерівність

яке виконується за тих x, для яких 2 x 2 - 3x - 5 < 0. Вновь применим метод интервалов

Тепер з урахуванням вирішення другої нерівності системи остаточно отримуємо

Відповідь:

Приклад 5.

Рішення:

Нерівність рівносильна сукупності систем

або

Застосуємо метод інтервалів або

Відповідь:

Приклад 6.

Рішення:

Нерівність рівносильна системі

Нехай

тоді y > 0,

і перша нерівність

системи набуває вигляду

або, розкладаючи

квадратний тричлен на множники,

Застосовуючи до останньої нерівності метод інтервалів,

бачимо, що його рішеннями, що задовольняють умові y> 0 будуть усі y > 4.

Таким чином вихідна нерівність еквівалентна системі:

Отже, рішеннями нерівності є всі

2.2. Метод раціоналізації.

Раніше шляхом раціоналізації нерівності не вирішували, його не знали. Це "новий сучасний ефективний метод розв'язання показових та логарифмічних нерівностей" (цитата з книжки Колесникова С.І.)
І навіть якщо педагог його знав, була побоювання - а чи знає його експерт ЄДІ, а чому в школі його не дають? Були ситуації, коли вчитель говорив учневі: "Де взяв? Сідай – 2."
Нині метод повсюдно просувається. І для експертів є методичні вказівки, пов'язані з цим методом, і в "Найповніших виданнях типових варіантів..." у рішенні С3 використовується цей метод.
МЕТОД ЧУДОВИЙ!

«Чарівна таблиця»


В інших джерелах

якщо a >1 і b >1, log a b >0 і (a -1)(b -1)>0;

якщо a >1 та 0

якщо 0<a<1 и b >1, то log a b<0 и (a -1)(b -1)<0;

якщо 0<a<1 и 00 та (a -1)(b -1)>0.

Проведені міркування нескладні, але помітно спрощують розв'язання логарифмічних нерівностей.

Приклад 4.

log x (x 2 -3)<0

Рішення:

Приклад 5.

log 2 x (2x 2 -4x +6)≤log 2 x (x 2 +x )

Рішення:

Відповідь. (0; 0,5) U.

Приклад 6.

Для розв'язання цієї нерівності замість знаменника запишемо (х-1-1)(х-1), а замість чисельника - твір (х-1)(х-3-9+х).


Відповідь : (3;6)

Приклад 7.

Приклад 8.

2.3. Нестандартне підстановлення.

приклад 1.

приклад 2.

Приклад 3.

Приклад 4.

Приклад 5.

Приклад 6.

Приклад 7.

log 4 (3 x -1)log 0,25

Зробимо заміну у = 3 х -1; тоді ця нерівність набуде вигляду

Log 4 log 0,25
.

Так як log 0,25 = -log 4 = -(log 4 y -log 4 16)=2-log 4 y , то перепишемо останню нерівність у вигляді 2log 4 y -log 4 2 y ≤.

Зробимо заміну t = log 4 y і отримаємо нерівність t 2 -2t +≥0, розв'язком якої є проміжки - .

Таким чином, для знаходження значень маємо сукупність двох найпростіших нерівностей
Вирішення цієї сукупності є проміжками 0<у≤2 и 8≤у<+.

Отже, вихідна нерівність рівносильна сукупності двох показових нерівностей,
тобто сукупності

Рішенням першої нерівності цієї сукупності є проміжок 0<х≤1, решением второго – промежуток 2≤х<+. Таким чином, вихідна нерівність виконується для всіх значень х із проміжків 0<х≤1 и 2≤х<+.

Приклад 8.

Рішення:

Нерівність рівносильна системі

Рішенням другої нерівності, що визначає ОДЗ, буде безліч тих x,

для яких x > 0.

Для вирішення першої нерівності зробимо заміну

Тоді отримуємо нерівність

або

Безліч рішень останньої нерівності перебуває методом

інтервалів: -1< t < 2. Откуда, возвращаясь к переменной x, отримуємо

або

Безліч тих x, які задовольняють останній нерівності

належить ОДЗ ( x> 0), отже, є рішенням системи,

отже, і вихідної нерівності.

Відповідь:

2.4. Завдання з пастки.

приклад 1.

.

Рішення.ОДЗ нерівності є всі х, які задовольняють умові 0 . Отже, всі х із проміжку 0

приклад 2.

log 2 (2 x +1-x 2)> log 2 (2 x-1 +1-x) +1.. ? Справа в тому, що друге число з очевидністю більше ніж

Висновок

Було непросто визначити з великої кількості різних навчальних джерел спеціальні способи вирішення завдань С3. У ході виконаної роботи мені вдалося вивчити нестандартні методи розв'язання складних логарифмічних нерівностей. Це: рівносильні переходи та узагальнений метод інтервалів, метод раціоналізації , нестандартна підстановка , завдання з пастками на ОДЗ. У шкільній програмі ці методи відсутні.

Різними методами вирішив 27 нерівностей, запропонованих на ЄДІ у частині З, саме С3. Ці нерівності з рішеннями за методами стали основою збірки «Логарифмічні нерівності С3 з рішеннями», яка стала проектним продуктом моєї діяльності. Гіпотеза, поставлена ​​мною на початку проекту, підтвердилася: завдання С3 можна ефективно вирішувати, знаючи ці методи.

Крім того, я виявив цікаві факти логарифмів. Мені це було цікаво робити. Мої проектні продукти будуть корисними як для учнів, так і для вчителів.

Висновки:

Таким чином, поставленої мети проекту досягнуто, проблему вирішено. А я здобув найбільш повний та різнобічний досвід проектної діяльності на всіх етапах роботи. У ході роботи над проектом у мене основний вплив, що розвивається, було надано на розумову компетентність, діяльність, пов'язану з логічними розумовими операціями, розвиток творчої компетентності, особистої ініціативи, відповідальності, наполегливості, активності.

Гарантією успіху при створенні дослідницького проекту для мене стали: значний шкільний досвід, уміння добувати інформацію із різних джерел, перевіряти її достовірність, ранжувати її за значимістю.

Крім безпосередньо предметних знань з математики, розширив свої практичні навички у сфері інформатики, отримав нові знання та досвід у галузі психології, налагодив контакти з однокласниками, навчився співпрацювати з дорослими людьми. У ході проектної діяльності розвивалися організаційні, інтелектуальні та комунікативні загальнонавчальні вміння та навички.

Література

1. Корянов А. Г., Прокоф'єв А. А. Системи нерівностей з однією змінною (типові завдання С3).

2. Малкова А. Г. Підготовка до ЄДІ з математики.

3. Самарова С. С. Вирішення логарифмічних нерівностей.

4. Математика. Збірник тренувальних робіт за редакцією А.Л. Семенова та І.В. Ященко. -М: МЦНМО, 2009. - 72 с.-

Вирішуючи логарифмічні нерівності, ми користуємося властивістю монотонності логарифмічної функції. Також ми використовуємо визначення логарифму та основні логарифмічні формули.

Давайте повторимо, що таке логарифми:

Логарифмпозитивного числа на підставі - це показник ступеня, в який треба звести, щоб отримати.

При цьому

Основне логарифмічне тотожність:

Основні формули для логарифмів:

(Логарифм твору дорівнює сумі логарифмів)

(Логарифм приватного дорівнює різниці логарифмів)

(Формула для логарифму ступеня)

Формула переходу до нової основи:

Алгоритм розв'язання логарифмічних нерівностей

Можна сміливо сказати, що логарифмічні нерівності вирішуються за певним алгоритмом. Нам потрібно записати область допустимих значень (ОДЗ) нерівності. Привести нерівність до виду Знак тут може бути будь-який: Важливо, щоб ліворуч і праворуч у нерівності знаходилися логарифми з тієї самої основи.

І після цього "відкидаємо" логарифми! При цьому, якщо підстава ступеня, знак нерівності залишається тим самим. Якщо основа така, що знак нерівності змінюється на протилежний.

Звичайно, ми не просто «відкидаємо» логарифми. Ми користуємось властивістю монотонності логарифмічної функції. Якщо основа логарифму більше одиниці, логарифмічна функція монотонно зростає, і тоді більшому значенню х відповідає більше значення виразу .

Якщо основа більша за нуль і менше одиниці, логарифмічна функція монотонно зменшується. Більшому значенню аргументу х відповідатиме менше значення

Важливо: найкраще записувати рішення у вигляді ланцюжка рівносильних переходів.

Перейдемо до практики. Як завжди, почнемо з найпростіших нерівностей.

1. Розглянемо нерівність log 3 x > log 3 5.
Оскільки логарифми визначено лише для позитивних чисел, необхідно, щоб x був позитивним. Умова x > 0 називається областю допустимих значень (ОДЗ) цієї нерівності. Тільки за таких x нерівність має сенс.

Що ж, це формулювання хвацько звучить і легко запам'ятовується. Але чому ми таки можемо це зробити?

Ми люди, ми маємо інтелект. Наш розум влаштований так, що все логічне, зрозуміле, що має внутрішню структуру, запам'ятовується і застосовується набагато краще, ніж випадкові і не пов'язані між собою факти. Ось чому важливо не механічно визубрити правила, як дресирована собачка-математик, а діяти усвідомлено.

То чому ж ми таки «відкидаємо логарифми»?

Відповідь проста: якщо основа більша одиниці (як у нашому випадку), логарифмічна функція монотонно зростає, значить, більшому значенню x відповідає більше значення y і з нерівності log 3 x 1 > log 3 x 2 випливає, що x 1 > x 2 .


Зверніть увагу, ми перейшли до алгебраїчної нерівності, і знак нерівності при цьому зберігається.

Отже, х > 5.

Наступна логарифмічна нерівність теж проста.

2. log 5 (15 + 3x) > log 5 2x

Почнемо з області допустимих значень. Логарифми визначені лише для позитивних чисел, тому

Вирішуючи цю систему, отримаємо: x>0.

Тепер від логарифмічної нерівності перейдемо до алгебраїчної - відкинемо логарифми. Оскільки основа логарифму більше одиниці, знак нерівності при цьому зберігається.

15+3x > 2x.

Отримуємо: x > −15.

Відповідь: x > 0.

А що ж буде, якщо підстава логарифму менша за одиницю? Легко здогадатися, що в цьому випадку при переході до нерівності алгебри знак нерівності буде змінюватися.

Наведемо приклад.

Запишемо ОДЗ. Вирази, від яких беруться логарифми, мають бути позитивними, тобто

Вирішуючи цю систему, отримаємо: x > 4,5.

Оскільки логарифмічна функція з основою монотонно зменшується. А це означає, що більшому значенню функції відповідає менше аргументу:


І якщо , то
2x − 9 ≤ x.

Отримаємо, що x ≤ 9.

Враховуючи, що x > 4,5, запишемо відповідь:

У наступному завданні показова нерівність зводиться до квадратного. Тож тему «квадратні нерівності» рекомендуємо повторити.

Тепер складніші нерівності:

4. Вирішіть нерівність

5. Вирішіть нерівність

Якщо то . Нам пощастило! Ми знаємо, що основа логарифму більше одиниці для всіх значень х, що входять до ОДЗ.

Зробимо заміну

Зверніть увагу, що спочатку ми повністю вирішуємо нерівність щодо нової змінної t. І лише після цього повертаємось до змінної x. Запам'ятайте це та не помиляйтесь на іспиті!

Запам'ятаємо правило: якщо у рівнянні чи нерівності присутні коріння, дроби чи логарифми – рішення треба починати з області допустимих значень. Оскільки основа логарифму має бути позитивна і не дорівнює одиниці, отримаємо систему умов:

Спростимо цю систему:

Це область допустимих значень нерівності.

Ми бачимо, що змінна міститься в основі логарифму. Перейдемо до постійної основи. Нагадаємо, що

В даному випадку зручно перейти до основи 4.


Зробимо заміну

Спростимо нерівність і розв'яжемо його методом інтервалів:

Повернемося до змінної x:


Ми додали умову x> 0 (з ОДЗ).

7. Наступне завдання теж вирішується за допомогою методу інтервалів

Як завжди, вирішення логарифмічної нерівності починаємо з області допустимих значень. В даному випадку

Ця умова обов'язково має виконуватись, і до неї ми повернемося. Розглянемо поки що сама нерівність. Запишемо ліву частину як логарифм на підставі 3:

Праву частину теж можна записати як логарифм на підставі 3, а потім перейти до алгебраїчної нерівності:

Бачимо, що умова (тобто ОДЗ) тепер виконується автоматично. Що ж, це спрощує вирішення нерівності.

Вирішуємо нерівність шляхом інтервалів:

Відповідь:

Вийшло? Що ж, підвищуємо рівень складності:

8. Розв'яжіть нерівність:

Нерівність рівносильна системі:

9. Розв'яжіть нерівність:

Вираз 5 - x 2 нав'язливо повторюється за умови завдання. А це означає, що можна зробити заміну:

Оскільки показова функція набуває лише позитивних значень, t> 0. Тоді

Нерівність набуде вигляду:

Вже краще. Знайдемо область допустимих значень нерівності. Ми вже сказали, що t> 0. Крім того, ( t− 3) (5 9 · t − 1) > 0

Якщо ця умова виконана, то і приватна буде позитивною.

А ще вираз під логарифмом у правій частині нерівності має бути позитивним, тобто (625 t − 2) 2 .

Це означає, що 625 t− 2 ≠ 0, тобто

Акуратно запишемо ОДЗ

і вирішимо систему, що вийшла, застосовуючи метод інтервалів.

Отже,

Що ж, півсправи зроблено – розібралися з ОДЗ. Вирішуємо саму нерівність. Суму логарифмів у лівій частині представимо як логарифм твору.

Цілі уроку:

Дидактичні:

  • 1 рівень – навчити вирішувати найпростіші логарифмічні нерівності, застосовуючи визначення логарифму, властивості логарифмів;
  • 2 рівень – вирішувати логарифмічні нерівності, вибираючи самостійно спосіб розв'язання;
  • 3 рівень – вміти застосовувати знання та вміння у нестандартних ситуаціях.

Розвиваючі:розвивати пам'ять, увагу, логічне мислення, навички порівняння, вміти узагальнювати та робити висновки

Виховні:виховувати акуратність, відповідальність за завдання, взаємодопомога.

Методи навчання: словесний , наочний , практичний , частково-пошуковий , самоврядування , контролю.

Форми організації пізнавальної діяльності учнів: фронтальний , індивідуальний , робота у парах.

Обладнання: набір тестових завдань, опорний конспект, чисті листи для розв'язків.

Тип уроку:Вивчення нового матеріалу.

Хід уроку

1. Організаційний момент.Оголошуються тема та цілі уроку, схема проведення уроку: кожному учневі видається оцінний лист, який учень заповнює протягом уроку; для кожної пари учнів – друковані матеріали із завданнями, виконувати завдання потрібно у парах; чисті листи для розв'язків; опорні листи: визначення логарифму; графік логарифмічної функції, її властивості; властивості логарифмів; алгоритм розв'язання логарифмічних нерівностей.

Усі рішення після самооцінки здаються вчителю.

Оціночний лист учня

2. Актуалізація знань.

Вказівки вчителя. Згадайте визначення логарифму, графік логарифмічної функції та її властивості. Для цього прочитайте текст на с.88–90, 98–101 підручника “Алгебра та початки аналізу 10–11” за редакцією Ш.А Алімова, Ю.М Колягіна та ін.

Учням лунають листи, на яких записані: визначення логарифму; зображено графік логарифмічної функції, її властивості; властивості логарифмів; алгоритм розв'язання логарифмічних нерівностей, приклад розв'язання логарифмічної нерівності, що зводиться до квадратного.

3. Вивчення нового матеріалу.

Вирішення логарифмічних нерівностей засноване на монотонності логарифмічної функції.

Алгоритм розв'язання логарифмічних нерівностей:

А) Знайти область визначення нерівності (підлогарифмічний вираз більше за нуль).
Б) Уявити (якщо можливо) ліву і праву частини нерівності у вигляді логарифмів по тому самому підставі.
В) Визначити, зростаючою чи спадною є логарифмічна функція: якщо t>1, то зростаюча; якщо 0 1, то спадна.
Г) Перейти до більш простої нерівності (підлогарифмічних виразів), враховуючи, що знак нерівності збережеться, якщо функція зростає, і зміниться, якщо вона менша.

Навчальний елемент №1.

Мета: закріпити вирішення найпростіших логарифмічних нерівностей

Форма організації пізнавальної діяльності учнів: індивідуальна робота.

Завдання для самостійної роботи на 10 хвилин. Для кожної нерівності є кілька варіантів відповідей, необхідно вибрати правильний і перевірити по ключу.


КЛЮЧ: 13321, максимальна кількість балів – 6 б.

Навчальний елемент №2.

Мета: закріпити розв'язання логарифмічних нерівностей, застосовуючи властивості логарифмів.

Вказівки вчителя. Згадайте основні властивості логарифмів. Для цього прочитайте текст підручника на с.92, 103-104.

Завдання для самостійної роботи на 10 хвилин.

КЛЮЧ: 2113, максимальна кількість балів – 8 б.

Навчальний елемент №3.

Мета: вивчити розв'язання логарифмічних нерівностей шляхом зведення до квадратного.

Вказівки вчителя: метод зведення нерівності до квадратного полягає в тому, що потрібно перетворити нерівність до такого виду, щоб деяку логарифмічну функцію позначити новою змінною, отримавши при цьому квадратну нерівність щодо цієї змінної.

Застосуємо метод інтервалів.

Ви пройшли перший рівень засвоєння матеріалу. Тепер вам доведеться самостійно вибрати метод розв'язання логарифмічних рівнянь, використовуючи всі свої знання та можливості.

Навчальний елемент №4.

Мета: закріпити розв'язання логарифмічних нерівностей, обравши самостійно раціональний спосіб розв'язання.

Завдання для самостійної роботи на 10 хвилин

Навчальний елемент №5.

Вказівки вчителя. Молодці! Ви освоїли розв'язання рівнянь другого рівня складності. Метою подальшої вашої роботи є застосування своїх знань та умінь у більш складних та нестандартних ситуаціях.

Завдання для самостійного вирішення:

Вказівки вчителя. Чудово, якщо ви впоралися з усім завданням. Молодці!

Оцінка за весь урок залежить від кількості набраних балів за всіма навчальними елементами:

  • якщо N ≥ 20, то ви отримуєте оцінку “5”,
  • при 16 ≤ N ≤ 19 – оцінка “4”,
  • при 8 ≤ N ≤ 15 – оцінка “3”,
  • при N< 8 выполнить работу над ошибками к следующему уроку (решения можно взять у учителя).

Оцінні лисиці здати вчителю.

5. Домашнє завдання: якщо ви набрали не більше 15 байт – виконайте роботу над помилками (рішення можна взяти у вчителя), якщо ви набрали більше 15 байт – виконайте творче завдання на тему “Логарифмічні нерівності”.

З ними перебувають усередині логарифмів.

Приклади:

\(\log_3⁡x≥\log_3⁡9\)
\(\log_3⁡ ((x^2-3))< \log_3⁡{(2x)}\)
\(\log_(x+1)⁡((x^2+3x-7))>2\)
\(\lg^2⁡((x+1))+10≤11 \lg⁡((x+1))\)

Як вирішувати логарифмічні нерівності:

Будь-яка логарифмічна нерівність потрібно прагнути привести до виду \(\log_a⁡(f(x)) ˅ \log_a(⁡g(x))\) (символ \(˅\) означає будь-який з ). Такий вид дозволяє позбутися логарифмів та їх підстав, зробивши перехід до нерівності виразів під логарифмами, тобто до виду (f(x) ˅ g(x)).

Але при виконанні цього переходу є одна дуже важлива тонкість:
\(-\) якщо - число і воно більше 1 - знак нерівності при переході залишається таким,
\(-\) якщо основа - число більше 0, але менше 1 (лежить між нулем і одиницею), то знак нерівності повинен змінюватися на протилежний, тобто.

Приклади:

\(\log_2⁡((8-x))<1\)
ОДЗ: \(8-x>0\)
\(-x>-8\)
\(x<8\)

Рішення:
\(\log\)\(_2\) \((8-x)<\log\)\(_2\) \({2}\)
\(8-x\)\(<\) \(2\)
\(8-2\(x>6\)
Відповідь: ((6; 8))

\(\log\)\(_(0,5⁡)\) \((2x-4)\)≥\(\log\)\(_(0,5)\) ⁡\(((x+ 1))\)
ОДЗ: \(\begin(cases)2x-4>0\\x+1 > 0\end(cases)\)
\(\begin(cases)2x>4\\x > -1\end(cases)\) \(\Leftrightarrow\) \(\begin(cases)x>2\\x > -1\end(cases) \) \(\Leftrightarrow\) \(x\in(2;\infty)\)

Рішення:
\(2x-4\)\(≤\) \(x+1\)
\(2x-x≤4+1\)
\(x≤5\)
Відповідь: \((2;5]\)

Дуже важливо!У будь-якій нерівності перехід від виду \(\log_a(⁡f(x)) ˅ \log_a⁡(g(x))\) до порівняння виразів під логарифмами можна робити тільки якщо:


Приклад . Розв'язати нерівність: \(\log\)\(≤-1\)

Рішення:

\(\log\) \(_(\frac(1)(3))⁡(\frac(3x-2)(2x-3))\)\(≤-1\)

Випишемо ОДЗ.

ОДЗ: \(\frac(3x-2)(2x-3)\) \(>0\)

\(⁡\frac(3x-2-3(2x-3))(2x-3)\)\(≥\) \(0\)

Розкриваємо дужки, наводимо .

\(⁡\frac(-3x+7)(2x-3)\) \(≥\) \(0\)

Множимо нерівність на \(-1\), не забувши при цьому перевернути знак порівняння.

\(⁡\frac(3x-7)(2x-3)\) \(≤\) \(0\)

\(⁡\frac(3(x-\frac(7)(3)))(2(x-\frac(3)(2)))\)\(≤\) \(0\)

Побудуємо числову вісь і відзначимо на ній точки \(\frac(7)(3)\) і \(\frac(3)(2)\). Зверніть увагу, точка із знаменника – виколота, незважаючи на те, що нерівність не сувора. Справа в тому, що ця точка не буде рішенням, тому що при підстановці в нерівність приведе нас до поділу на нуль.


\(x∈(\)\(\frac(3)(2)\) \(;\)\(\frac(7)(3)]\)

Тепер на ту ж числову вісь наносимо ОДЗ і записуємо у відповідь проміжок, який потрапляє в ОДЗ.


Записуємо остаточну відповідь.

Відповідь: \(x∈(\)\(\frac(3)(2)\) \(;\)\(\frac(7)(3)]\)

Приклад . Вирішити нерівність: \(\log^2_3⁡x-\log_3⁡x-2>0\)

Рішення:

\(\log^2_3⁡x-\log_3⁡x-2>0\)

Випишемо ОДЗ.

ОДЗ: \(x>0\)

Приступимо до вирішення.

Рішення: \(\log^2_3⁡x-\log_3⁡x-2>0\)

Перед нами типова квадратно-логарифмічна нерівність. Робимо.

\(t=\log_3⁡x\)
\(t^2-t-2>0\)

Розкладаємо ліву частину нерівності на .

\(D=1+8=9\)
\(t_1= \frac(1+3)(2)=2\)
\(t_2=\frac(1-3)(2)=-1\)
\((t+1)(t-2)>0\)

Тепер потрібно повернутись до вихідної змінної – ікса. Для цього перейдемо до , що має таке саме рішення, і зробимо зворотну заміну.

\(\left[ \begin(gathered) t>2 \\ t<-1 \end{gathered} \right.\) \(\Leftrightarrow\) \(\left[ \begin{gathered} \log_3⁡x>2 \\ \log_3⁡x<-1 \end{gathered} \right.\)

Перетворюємо \(2=\log_3⁡9\), \(-1=\log_3⁡\frac(1)(3)\).

\(\left[ \begin(gathered) \log_3⁡x>\log_39 \\ \log_3⁡x<\log_3\frac{1}{3} \end{gathered} \right.\)

Робимо перехід до порівняння аргументів. Підстави у логарифмів більше \(1\), тому знак нерівностей не змінюється.

\(\left[ \begin(gathered) x>9 \\ x<\frac{1}{3} \end{gathered} \right.\)

Поєднаємо розв'язання нерівності та ОДЗ на одному малюнку.


Запишемо відповідь.

Відповідь: \((0; \frac(1)(3))∪(9;∞)\)
gastroguru 2017